A Trend-based Prediction System for Web User Behavior

نویسندگان

  • Nien-Yi Jan
  • Shun-Chieh Lin
  • Nancy P. Lin
  • Chung-I Chang
چکیده

Since web applications make great progress, the latency of Internet owing to the network bandwidth becomes an urge problem in the cyber world. It is very important to deliberate on how to construct a prediction model to predict web users traveling path for adapting the website structure and improving the website performance. A trend based prediction model without extra information is proposed in this paper to generate prediction models with a sequence of pages for a proxy server prefetcting the suitable pages. The trend similarity is the core of our proposed model which considers not only the page similarity but also position similarity. Two measures include page correctness rate and order correctness rate are proposed to evaluate accuracy of our prediction system. Key-Words: Trend similarity, Prediction system, Web mining, User behavior, Sequence mining

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behavioral Considerations in Developing Web Information Systems: User-centered Design Agenda

The current paper explores designing a web information retrieval system regarding the searching behavior of users in real and everyday life. Designing an information system that is closely linked to human behavior is equally important for providers and the end users.  From an Information Science point of view, four approaches in designing information retrieval systems were identified as system-...

متن کامل

تشخیص ناهنجاری روی وب از طریق ایجاد پروفایل کاربرد دسترسی

Due to increasing in cyber-attacks, the need for web servers attack detection technique has drawn attentions today. Unfortunately, many available security solutions are inefficient in identifying web-based attacks. The main aim of this study is to detect abnormal web navigations based on web usage profiles. In this paper, comparing scrolling behavior of a normal user with an attacker, and simu...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Web pages ranking algorithm based on reinforcement learning and user feedback

The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...

متن کامل

RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features

Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008